RAMAKRISHNA MISSION VIDYAMANDIRA

(Residential Autonomous College under University of Calcutta)

B.A./B.Sc. FIRST SEMESTER EXAMINATION, JANUARY 2015

FIRST YEAR

Date : 14/01/2015 Time : 11 am – 2 pm

MATH FOR ECO (General)

Paper: |

Full Marks: 75

[Use a separate Answer Book for each group]

Group – A

	(Answer <u>any seven</u> questions)	[7×5]			
1.	A = {x $\in \mathbb{R} x \in [2,5]$ } & B = {x $\in \mathbb{R} x \in [4,5]$ } Then $(A^{C} - B)^{C} = ?$	[5]			
2.	Check whether the following function is injective and surjective? $f(x) = x^2 + 2, x \in \mathbb{R}$.	[3+2]			
3.	Prove that the finite intersection of open sets in $\mathbb R$ is also open in $\mathbb R$.	[5]			
4.	Prove that a monotone increasing sequence which is bounded above, converges to its supremum.	[5]			
5.	Prove that every convergent sequence is a cauchy sequence.	[5]			
6.	Prove that the series $1 + \frac{1}{2} + \frac{1}{3} + \dots$ is not convergent.	[5]			
7.	Test the convergence of the series $\sum \frac{n^2}{2^n}$.	[5]			
8.	Prove that an absolutely convergent series is convergent.	[5]			
9.	Prove that every cauchy sequence in \mathbb{R} is bounded.	[5]			
10.	Prove that the set A – B is an open set, where A = (0,1) and B = $\left\{\frac{1}{2^n}; n \in \mathbb{N}\right\}$.	[5]			
<u>Group – B</u>					

(Answer <u>any eight</u> questions) [8×5]

11. Reduce the following matrix to a roco-reduced echelon form and then find its rank : [5]

-1	2	-1	0
2	4	4	2
0	0	1	5
1	6	3	2

12. For what values of a & b the following system of equations has (i) a unique solution, (ii) infinite solutions, (iii) no solution.

$$x_1 + 4x_2 + 2x_3 = 1, \ 2x_1 + 7x_2 + 5x_3 = 2b, \ 4x_1 + ax_2 + 10x_3 = 2b + 1.$$
 [5]

- 13. Show that A_3 is a normal subgroup of S_3
- 14. Prove that the set $\langle Z_5, \oplus_5, \otimes_5 \rangle$ forms a commutative ring with unity. Is it a field? [5]
- 15. Using De Moivre's theorem prove that if α, β, γ are reals and $\cos \alpha + \cos \beta + \cos \gamma = 0$ & $\sin \alpha + \sin \beta + \sin \gamma = 0$ then, [5]
 - $\cos 3\alpha + \cos 3\beta + \cos 3\gamma = 3\cos(\alpha + \beta + \gamma)$ a)
 - $\sin 3\alpha + \sin 3\beta + \sin 3\gamma = 3\sin(\alpha + \beta + \gamma)$ b)
- 16. Using De Moivre's theorem solve the equation: $x^7 + 1 = 0$.
- 17. Show that the set of all even integers forms a commutative ring w.r.t usual addition & multiplication. [5]

[5]

[5]

18. a) Show that $\begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}$ is an orthogonal matrix.	[3]		
b) Show that determinant of any orthogonal matrix is either $+1$ or -1 .	[2]		
19. Solve the difference equation : $u_{n+3} + u_{n+2} - 8u_{n+1} - 12u_n = 0$			
20. Find u _x , from the following equation : $u_{x+2} + u_x = \sin \frac{\pi}{2} x$			
21. Show that $\Delta = E - 1$ where, $\Delta f(x) = [f(x+h) - f(x)]$ and $Ef(x) = f(x+h)$.	[5]		

- × -